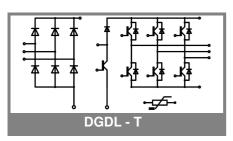


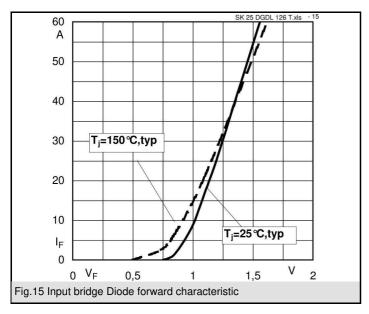
3-phase bridge rectifier + brake chopper + 3-phase bridge inverter

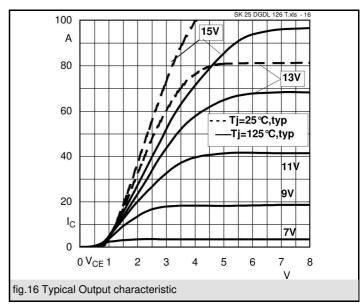
Preliminary Data

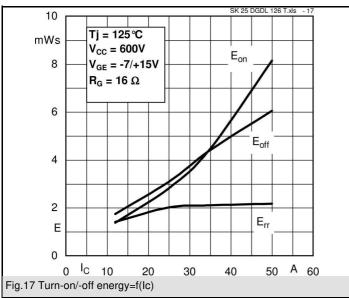

SK 25 DGDL 126 T

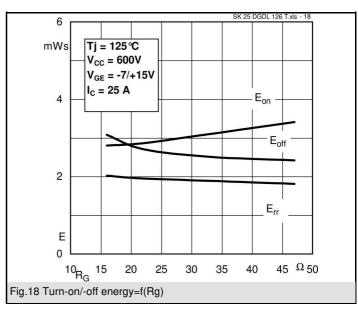
Features

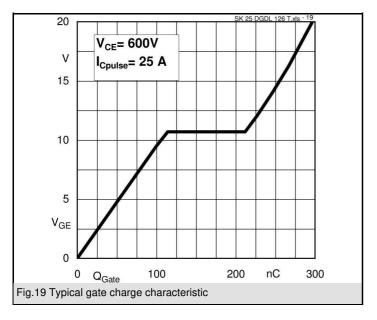
- · One screw mounting module
- Fully compatible with SEMITOP®1,2,3
- Improved thermal performances by aluminium oxide substrate
- Trench IGBT technology
- CAL technology free-wheeling diode
- Integrated NTC temperature sensor

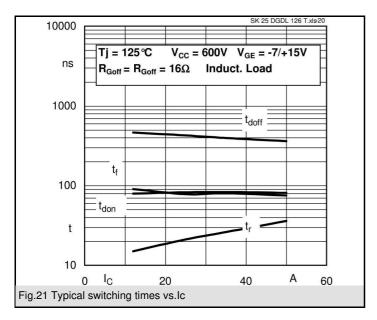

Typical Applications*

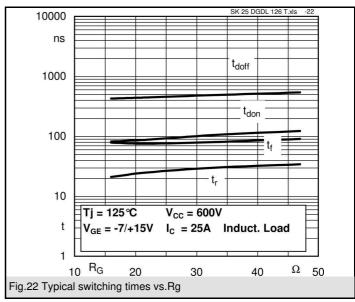

- Inverter up to 16 kVA
- Typ. motor power 7,5 kW
- 1) $V_{CE,sat}$, V_F = chip level value

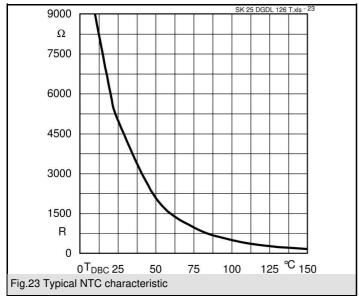


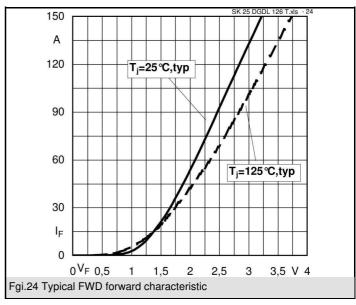

Absolute Maximum Ratings Ts = 25 °C, unless otherwise specifie								
Symbol	Conditions	Values	Units					
IGBT - Inverter,Chopper								
V_{CES}		1200	V					
I _C	$T_s = 25 (70) ^{\circ}C$	41 (31)	Α					
I _{CRM}	$I_{CRM} = 2 \times I_{Cnom}, t_p = 1 \text{ ms}$	50	Α					
V_{GES}	·	± 20	V					
T _j		-40 + 150	°C					
Diode - Inverter, Chopper								
I _F	T _s = 25 (70) °C	30 (22)	Α					
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$	50	Α					
T _j		-40 + 150	°C					
Rectifier								
V_{RRM}		1600	V					
I _F	T _s = 70 °C	35	Α					
I _{FSM} / I _{TSM}	$t_p = 10 \text{ ms}$, sin 180 °, $T_i = 25 \text{ °C}$	370	Α					
I ² t	$t_p = 10 \text{ ms}, \sin 180 ^{\circ}, T_i = 25 ^{\circ}\text{C}$	680	A²s					
T _j		-40 + 150	°C					
T _{sol}	Terminals, 10 s	260	°C					
T _{stg}		-40 +12 5	°C					
V _{isol}	AC, 1 min. / 1 s	2500 / 3000	V					

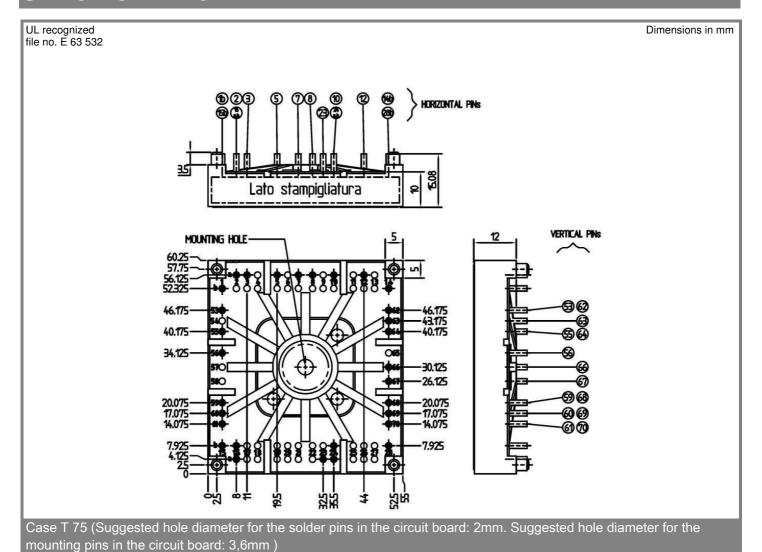

Characte	ristics	Ts = 25 °C	Ts = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter								
V_{CEsat} $V_{GE(th)}$ $V_{CE(TO)}$ r_{T}	$I_{C} = 25 \text{ A}, T_{j} = 25 \text{ (125) °C}$ $V_{GE} = V_{CE}, I_{C} = 1 \text{ mA}$ $T_{j} = 25 °C \text{ (125) °C}$ $T_{j} = 25 °C \text{ (125) °C}$ $V_{CE} = 25 V_{GE} = 0 \text{ V, f} = 1 \text{ MHz}$	5	1,7 (2) 5,8 1 (0,9) 28 (44) 1,8	2,1 (2,4) 6,5 1,2 (1,1) 36 (52)	V V MΩ nF			
$C_{\text{ies}} \\ C_{\text{oes}} \\ C_{\text{res}} \\ R_{\text{th(j-s)}}$	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$ $V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$ $V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$ per IGBT		0,095 0,082 0,9		nF nF K/W			
$\begin{aligned} & t_{d(on)} \\ & t_r \\ & t_{d(off)} \\ & t_f \\ & E_{on} \\ & E_{off} \end{aligned}$	under following conditions $\begin{aligned} &V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V} \\ &I_{C} = 25 \text{ A}, T_{j} = 125 \text{ °C} \\ &R_{Gon} = R_{Goff} = 16 \Omega \\ &\text{inductive load} \end{aligned}$		82 21 426 78 2,8 3,1		ns ns ns ns mJ mJ			
Diode - Inverter,Chopper								
$V_F = V_{EC}$ $V_{(TO)}$ r_T $R_{th(j-s)}$ I_{RRM} Q_{rr}	$I_F = 20 \text{ A}, T_j = 25(125) ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C} (125) ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C} (125) ^{\circ}\text{C}$ per diode under following conditions $I_F = 25 \text{ A}, V_R = 300 \text{ V}$			1,65 (1,7) 1,25 (1,2) 20 (25)	V V mΩ K/W A μC			
E _{rr}	$V_{GE} = 0 \text{ V}, T_j = 125 \text{ °C}$ $di_{F/dt} = 2100 \text{ A/µs}$		2		mJ			
Diode - R								
$V_{\text{F}} \\ V_{\text{(TO)}} \\ r_{\text{T}} \\ R_{\text{th(j-s)}}$	$I_F = 25 \text{ A}, T_j = 25() ^{\circ}\text{C}$ $T_j = 150 ^{\circ}\text{C}$ $T_j = 150 ^{\circ}\text{C}$ per diode		1,1 0,8 13 1,5		V V mΩ K/W			
	Temperatur sensor							
R _{ts}	5 %, T _r = 25 (100) °C		5000(493)		Ω			
Mechanic w	al data		60		g			
M_s	Mounting torque	2,5		2,75	Nm			

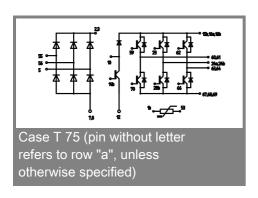












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.