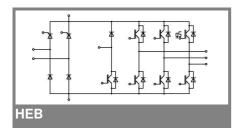


MiniSKiiP[®]1

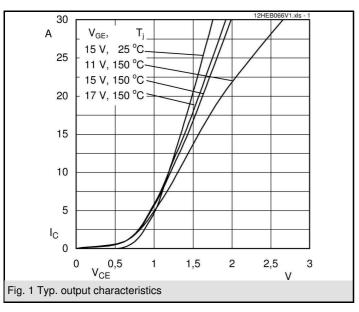
1-phase half controlled bridge rectifier + brake chopper + 3-phase bridge inverter SKiiP 12HEB066V1

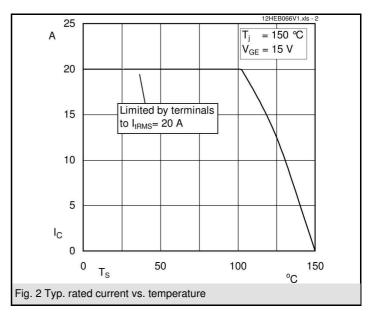
Features

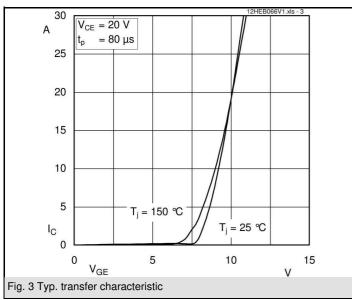

- Trench IGBTs
- · Robust and soft freewheeling diode in CAL technology
- Highly reliable spring contacts for electrical connection
- UL recognised file no. E63532

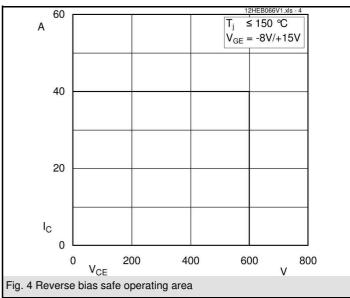
Remarks

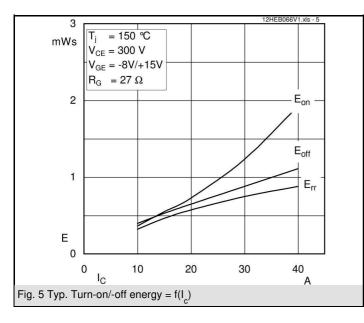
- Case temperature limited to T_C = 125°C max.
- · Product reliability results are valid for $T_i = 150$ °C
- SC data: $t_p \le 6$ s; $V_{GE} \le 15$ V; T_j = 150°C; V_{CC} = 360 V V_{CEsat} , V_F , V_T = chip level value

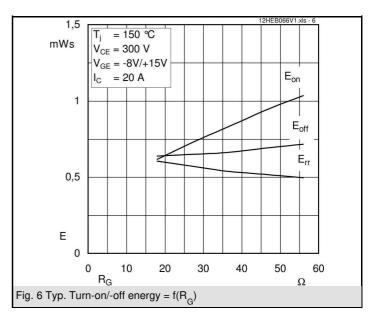

Absolute Maximum Ratings T _S = 25°C, unles otherwise specif								
Symbol	Conditions	Values	Units					
IGBT - Inverter, Chopper								
V _{CES}		600	V					
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 150 ^{\circ}C$	30 (21)	Α					
I _C	$T_s = 25 (70) ^{\circ}C, T_j = 175 ^{\circ}C$	33 (25)	Α					
I _{CRM}	$t_p = 1 \text{ ms}$	40	Α					
V_{GES}		±20	V					
T _j		-40+175	°C					
Diode - Inverter, Chopper								
I _F	$T_s = 25 (70) ^{\circ}C, T_j = 150 ^{\circ}C$	33 (22)	Α					
I _F	$T_s = 25 (70) ^{\circ}C, T_i = 175 ^{\circ}C$	39 (29)	Α					
I _{FRM}	t _p = 1 ms	40	Α					
T _j		-40+175	°C					
Diode / Thyristor - Rectifier								
V_{RRM}		800	V					
I _F / I _T	$T_{s} = 70$	46 / 45	Α					
I _{FSM} / I _{TSM}	$t_p = 10 \text{ ms, sin } 180 ^\circ, T_i = 25 ^\circ\text{C}$	370 / 340	Α					
i²t	$t_p = 10 \text{ ms, sin } 180 ^\circ, T_j = 25 ^\circ\text{C}$	575	A²s					
T _j	Diode	-40+150	°C					
T_{j}	Thyristor	-40+125	°C					
I _{tRMS}	per power terminal (20 A / spring)	20	Α					
T _{stg}	$T_{op} \le T_{stg}$	-40+125	°C					
V _{isol}	AC, 1 min.	2500	V					

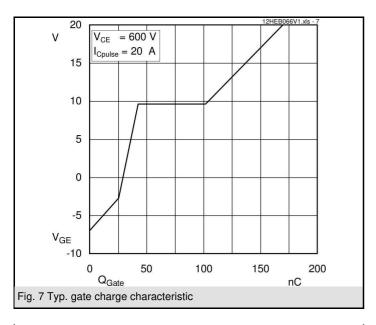

Characteristics		T _S = 25°C, unles otherwise specified							
Symbol	Conditions	min.	typ.	max.	Units				
IGBT - Inverter, Chopper									
V_{CEsat}	I _{Cnom} = 20 A, T _j = 25 (150) °C	1,1	1,45 (1,65)	1,85 (2,05)	V				
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$		5,8		V				
V _{CE(TO)}	T _j = 25 (150) °C		0,9 (0,85)	1 (0,9)	V				
r _T	$T_{j} = 25 (150) ^{\circ}C$		30 (42,5)	45 (60)	mΩ				
C _{ies}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		1,13		nF				
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,25		nF				
C _{res}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		0,18		nF				
R _{CC'+EE'}	spring contact-chip T _s = 25 (150)°C				mΩ				
$R_{th(j-s)}$	per IGBT		1,6		K/W				
t _{d(on)}	under following conditions		30		ns				
t _r `´	$V_{CC} = 300 \text{ V}, V_{GE} = -8\text{V}/+15\text{V}$		25		ns				
t _{d(off)}	I _{Cnom} = 20 A, T _j = 150 °C		265		ns				
t _f	$R_{Gon} = R_{Goff} = 27 \Omega$		50		ns				
$E_{on} \left(E_{off} \right)$	inductive load		0,8 (0,7)		mJ				
Diode - Inverter, Chopper									
$V_F = V_{EC}$	I _{Fnom} = 30 A, T _i = 25 (150) °C		1,5 (1,5)	1,7 (1,7)	V				
V _(TO)	$T_i = 25 (150) ^{\circ}C$		1 (0,9)	1,1 (1)	V				
r _T	T _j = 25 (150) °C		16,7 (20)	20 (23,3)	mΩ				
$R_{th(j-s)}$	per diode		2,1		K/W				
I _{RRM}	under following conditions		25,1		Α				
Q_{rr}	$I_{Fnom} = 20 \text{ A}, V_{R} = 300 \text{ V}$		2,6		С				
E _{rr}	V _{GE} = 0 V, T _i = 150 °C		0,6		mJ				
	di _F /dt = 980 A/ s								

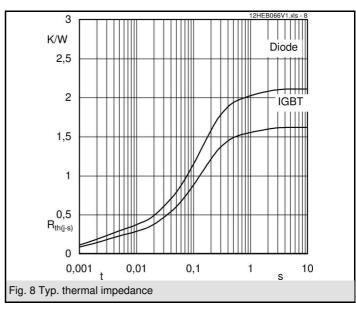


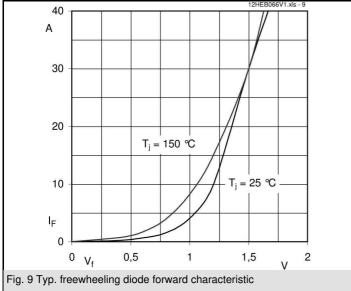

Characteristics		T_S = 25°C, unles otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units		
Diode - Rectifier							
V_{F}	I_{Fnom} = 25 A, T_j = 25 °C		1,1		V		
V _(TO)	T _i = 150 °C		0,8		V		
r _T	$T_{j} = 150 ^{\circ}\text{C}$		13		mΩ		
$R_{th(j-s)}$	per diode		1,25		K/W		
Thyristor - Rectifier							
V_T	I_{Fnom} = 25 A, T_j = 25 (125) °C			(1,6)	V		
$V_{T(TO)}$	T _i = 125 °C			1,1	V		
r _T	$T_{j} = 125 ^{\circ}\text{C}$			20	mΩ		
V_{GT}	T _j = 25 °C			2	V		
I_{GT}	T _j = 25 °C			100	mA		
I _H	T _j = 25 °C		80	150	mA		
IL	$T_j = 25 ^{\circ}\text{C}$		150	300	mA		
dv/dt _(cr)	T _j = 125 °C	500			V/ s		
di/dt _(cr)	T _j = 125 °C			100	A/ s		
$R_{th(j-s)}$	per thyristor		1,25		K/W		
Temperature Sensor							
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω		
Mechanical Data							
w			35		g		
M_s	Mounting torque	2		2,5	Nm		

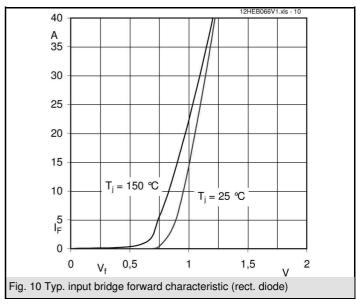

2 30-08-2006 SEN © by SEMIKRON

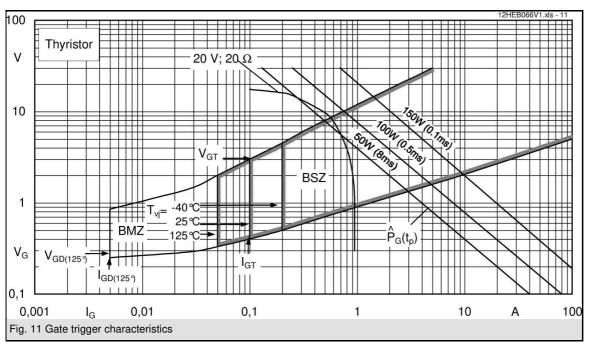


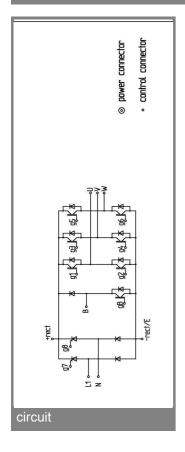


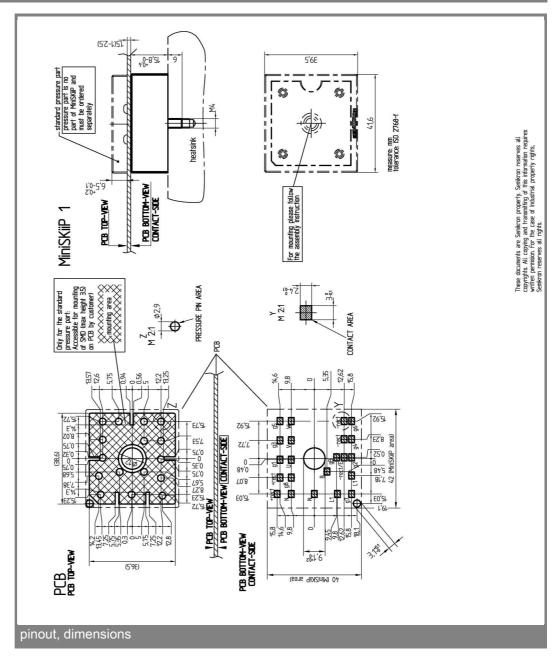












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

5 30-08-2006 SEN © by SEMIKRON