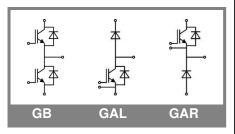


IGBT Module

SK45GB063 SK45GAL063 SK45GAR063


Preliminary Data

Features

- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N channel, homogeneous Silicon structure (NPT-Non punchtrough IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532

Typical Applications*

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s				= 25 °C, unless otherwise specified			
Symbol	Conditions			Values	Units		
IGBT							
V_{CES}	T _j = 25 °C			600	V		
I _C	T _j = 125 °C	T _s = 25 °C		45	Α		
		T _s = 80 °C		30	Α		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			100	Α		
V_{GES}				± 20	٧		
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; $V_{CES} < 600$ V	T _j = 125 °C		10	μs		
Inverse D	iode						
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$		57	Α		
		$T_s = 80 ^{\circ}C$		38	Α		
I _{FRM}					Α		
I _{FSM}	t_p = 10 ms; half sine wave	T _j = 150 °C		440	Α		
Freewheeling Diode							
I _F	T _j = 150 °C	$T_s = 25 ^{\circ}C$		57	Α		
		$T_s = 80 ^{\circ}C$		38	Α		
I _{FRM}					Α		
I _{FSM}	t _p = 150 ms;	$T_j = {^{\circ}C}$		440	Α		
Module							
I _{t(RMS)}					Α		
T_{vj}				-40 + 150	°C		
T _{stg}				-40 + 125	°C		
V _{isol}	AC, 1 min.			2500	٧		

Characteristics T _s			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT						·	
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES}$	T _j = 25 °C			0,15	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 30 V	T _j = 25 °C			120	nA	
		T _j = 125 °C				nA	
V _{CE0}		T _j = 25 °C		1		V	
		T _j = 125 °C		1,1		V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		20		mΩ	
		T _j = 125°C				mΩ	
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		2,1	2,5	V	
		$T_j = 125^{\circ}C_{chiplev.}$				V	
C _{ies}				2,2		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz				nF	
C _{res}				0,2		nF	
Q_G	V _{GE} = 0 20 V			155		nC	
t _{d(on)}				45		ns	
t _r	$R_{Gon} = 22 \Omega$	V _{CC} = 300V		35		ns	
E _{on}	D = 00 O	I _C = 30A		1,4		mJ	
${rac{t_{d(off)}}{t_f}}$	$R_{Goff} = 22 \Omega$	$T_j = 125 ^{\circ}\text{C}$ $V_{GE} = \pm 15\text{V}$		250 25		ns ns	
Կ E _{off}		GE -10V		1,2		mJ	
R _{th(j-s)}	per IGBT	1			1	K/W	

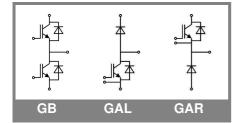
IGBT Module

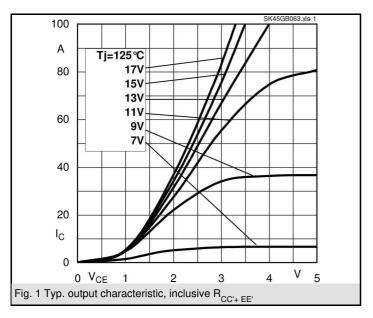
SK45GB063 SK45GAL063 SK45GAR063

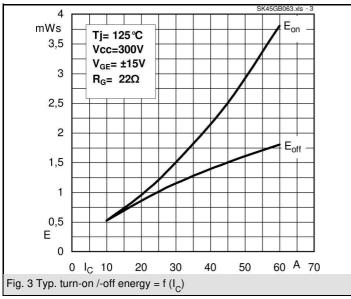
Preliminary Data

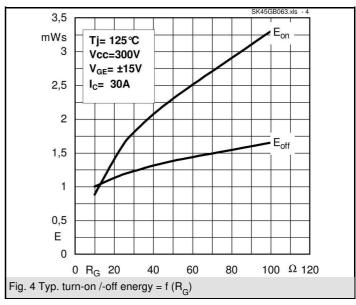
Features

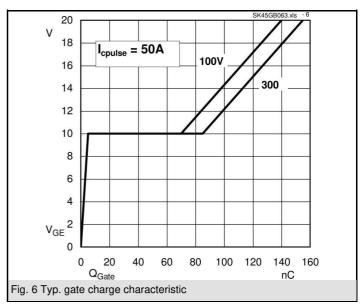
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N channel, homogeneous Silicon structure (NPT-Non punchtrough IGBT)
- High short circuit capability
- Low tail current with low temperature dependence
- UL recognized, file no. E63532

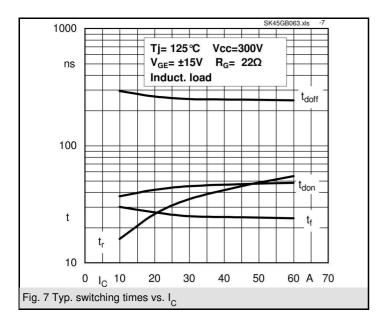

Typical Applications*

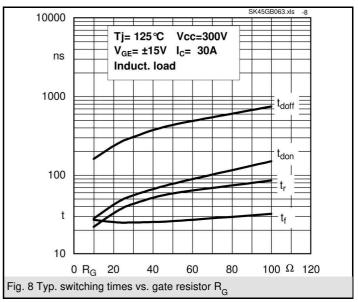

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

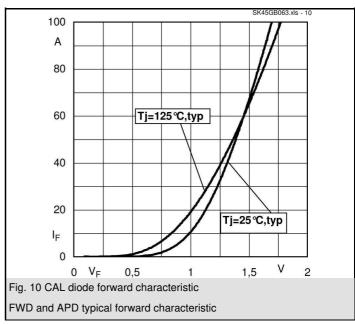

Characteristics							
Symbol	Conditions	İ	min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	I_{Fnom} = 30 A; V_{GE} = 0 V			1,45	1,7	V	
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,4	1,75	V	
V_{F0}		T _j = 125 °C		0,85	0,9	V	
r _F		T _j = 125 °C		9	16	$m\Omega$	
I _{RRM}	I _F = 30 A	T _j = 125 °C		16		Α	
Q_{rr}	di/dt = -500 A/µs			2		μC	
E _{rr}	V _{CC} =300V			0,25		mJ	
$R_{th(j-s)D}$	per diode				1,2	K/W	
Freewheeling Diode							
$V_F = V_{EC}$	I_{Fnom} = 30 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{\text{chiplev.}}$		1,45	1,7	V	
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,4	1,75	V	
V_{F0}		T _j = 125 °C		0,85	0,9	V	
r _F		T _j = 125 °C		9	16	V	
I _{RRM}	I _F = 30 A	T _i = 125 °C		16		Α	
Q_{rr}	di/dt = -500 A/μs			2		μC	
E _{rr}	V _{CC} =300V			0,25		mJ	
$R_{th(j-s)FD}$	per diode				1,2	K/W	
M_s	to heat sink		•	•	2	Nm	
w				19		g	

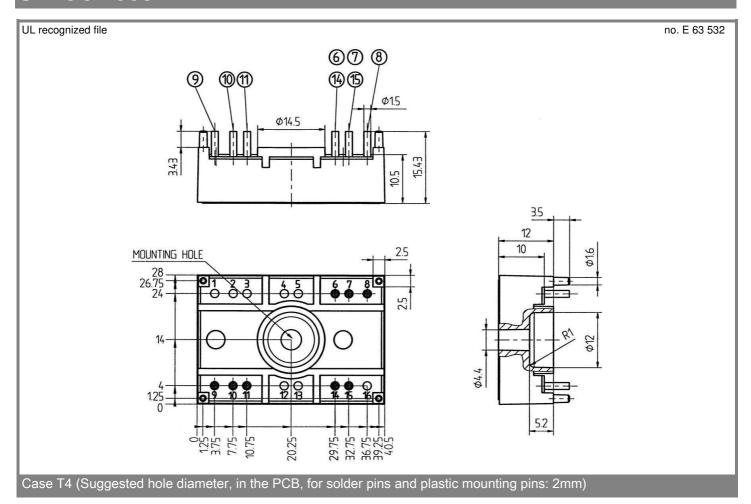

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

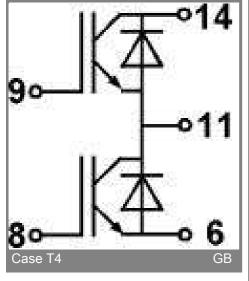

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.










SK45GB063

